The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Ignacio M. Llorente

dsa-research.org

Distributed Systems Architecture Research Group
Universidad Complutense de Madrid
Cloud Computing in a Nutshell

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

<table>
<thead>
<tr>
<th>What</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-demand access to any application</td>
<td>End-user (does not care about hw or sw)</td>
</tr>
<tr>
<td>Platform for building and delivering web applications</td>
<td>Developer (no managing of the underlying hw & sw layers)</td>
</tr>
</tbody>
</table>

Software as a Service

- End-user (skype, Gmail, Facebook)

Platform as a Service

- Developer (Windows Azure, force.com)

Infrastructure as a Service

- Physical Infrastructure

OpenNebula.org

Innovative open, flexible and scalable technology to build IaaS clouds
From Public to Private Cloud Computing
The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Public Cloud
• Flexible and elastic capacity
• Ubiquitous network access
• On-demand access
• Pay per use

Private Cloud
• Centralized management
• VM placement optimization
• Dynamic resizing and partitioning of the infrastructure
• Support for heterogeneous workloads
The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Contents

Innovations
Designed to address the technology challenges in cloud computing management

Toolkit
OpenNebula v1.4

Community
Users, projects and ecosystem

Open-source and Standardization
Ongoing efforts
The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

The Innovations: Infrastructure User View

Elastic Multi-tier Services

- Service as basic management entity
- Cloud Restful interface and CLI to manage virtual machines, network and storage => Based on an open standard
- Concurrent support for other popular interfaces (Amazon EC2)

Service as Groups of VMs

- Service components in VMs
- Inter-connection relationship
- Placement constraints
The Innovations: Infrastructure Manager View

Flexible, Efficient and Scalable Management of the Cloud

- **Administration interface** for the centralized monitoring and management of the infrastructure
- Support for the definition of workload and resource-aware allocation policies such as consolidation (energy efficiency), load balancing, affinity-aware, capacity reservation…
- **Integration** with existing management tools in the data center

Scalable back-end
- Virtualization
- Storage
- Networking
The Innovations: Infrastructure Manager View

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Hybrid Cloud Computing and Federation

- *Cloudbursting* at infrastructure layer, fully transparent to users
- Scale-out decisions are taken by infrastructure administrators according to business policies

Two levels of Collaboration

- Extend the private cloud using both partner and commercial clouds
- Create a federation of clouds
The Innovations: System Integrator View

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Open Architecture, Interfaces and Code

- **Integration with any product and service** in the virtualization/cloud ecosystem such as cloud providers, hypervisors, virtual image managers, service managers, management tools, schedulers…

- **Support to build any type of deployment**: private, public, hybrid and community clouds

- **Easy to enhance** to support new functionality

- **Easy to embed** into other Cloud applications and platforms

- **Liberal open-source license**

Out-of-the-box Cloud Solution

Embedded VM Orchestrator in PaaS and SaaS Solution

Platform for Innovative Projects
The Toolkit: OpenNebula 1.4

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

One Size does not Fit All: Tailoring the Tool to Fit your Needs

- Open, modular and extensible architecture
- Minimum installation requirements (distributed in Ubuntu)
- Open Source – Apache 2

Interfaces

Schedulers

OpenNebula API

Virtual and Physical Resource Management

Driver API

Compute

Storage

Network

Cloud
Feature Function

Internal Interface
- Unix-like CLI for fully management of VM life-cycle and resources
- XML-RPC API and libvirt virtualization API

Scheduler
- Requirement/rank matchmaker allowing the definition of workload and resource-aware allocation policies
- Support for advance reservation of capacity through Haizea

Virtualization Management
- Xen, KVM, and VMware

Image Management
- General mechanisms to transfer and clone VM images

Network Management
- Definition of isolated virtual networks to interconnect VMs

Service Management and Contextualization
- Support for multi-tier services consisting of groups of inter-connected VMs, and their auto-configuration at boot time
The Toolkit: Building a Public Cloud

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

<table>
<thead>
<tr>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Interfaces for Users</td>
<td>• Implementation of a subset of the EC2 Query API and OGF - OCCI</td>
</tr>
<tr>
<td>Flexibility</td>
<td>• The Cloud Service allows the implementation of new Cloud interfaces</td>
</tr>
</tbody>
</table>
Feature | Function
--- | ---
Cloud Plugins | • Amazon EC2 and ElasticHosts connectors
Federation | • Support for simultaneous access to several remote clouds
Flexibility | • Modular approach to develop new connectors
The Community: Users

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Users (Different Levels of Use: From Experimental to Production)

Projects
The Community: Active Ecosystem

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Components around OpenNebula

• Haizea Lease Manager (University of Chicago): Advance reservation of capacity and queuing of best effort requests
• RESERVOIR Policy Engine (IBM Haifa/Elsag Datamat): Policy-driven probabilistic admission control and dynamic placement optimization to satisfy site level management policies
• VM Consolidation Scheduler (UCM): Periodic re-placement of VMs for server consolidation and suspension/resume of physical resources
• Virtual Cluster Tool (CRS4 Distributed Computing Group): Atomic virtual cluster management with versioning and multiple transport protocols.
• Nephele (Telefonica I+D): SLA-driven automatic service management
• Under Development: SUN Cloud API, vCloud API, VirtualBox plugin, dashboard for infrastructure management, new schedulers, SLA and security framework, Grid service manager, LVM and SAN support,…

• …
Haizea Lease Manager

Haizea is a lease manager that can act as a scheduling backend for OpenNebula, providing advanced functionality such as:

- Advance reservation of capacity
- Best-effort scheduling with backfilling
- Resource preemption (using VM suspend/resume/migrate)
- Policy engine, allowing developers to write pluggable scheduling policies in Python
- Includes a simulation mode (useful for researchers testing scheduling algorithms)
- Open source (Apache 2)

http://haizea.cs.uchicago.edu/
Open-source and Standardization: Other Technologies

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

Other Open-Source Technologies

- **Eucalyptus**
 - Compatible with **Amazon EC2 interfaces** and designed to support additional client-side interfaces
 - Exposes EC2 and WSRF interfaces and offers self-configuring virtual cluster support
 - Management of clusters and virtual machines through a single easy to use interface

- **Nimbus**

- **enomaly**

Commercial Software

- **VMware vSphere™**
 - **VMware** solution for private cloud computing

- **Platform ISF**
 - **Infrastructure sharing software** for physical and virtual resources
Open-source and Standardization: Existing Efforts

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

A Positioning of Cloud Standards

Proprietary APIs e.g. Amazon Web Services

“Cloud”

Current scenario

Private Cloud

Hybrid Cloud

Proprietary APIs

Possible future scenario
(Corporates & Federal Agencies)

“Storefront”

Standard APIs

Public Cloud

Enabling technologies

OASIS

SaaS

PaaS

DaaS

IaaS

OCCI

OpenGridForum

“or”

Proprietary APIs e.g. Amazon Web Services

courtesy of Enrico Ronco, Telecom Italia

cloud-standards.org

17/20
Open-source and Standardization: Interface Standard

The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures

OGF OCCI Open Cloud Computing Interface

operation: GET http://abc.com/compute/uid123foobar/

Provider

Instance

Operations

Compute

Network

Storage

Resources can be linked

Operations operate on resources (start, stop, delete, update)

Covered by OCCI
IT Resources will be the Next Utility

- Future enterprise datacenters will look like private Clouds supporting a flexible and agile execution of virtualized services, and combining local with public Cloud-based infrastructure to enable highly scalable hosting environments.

- Growing number of domain specific and regional Cloud providers implementing a utility computing business model by offering pay per use resources on-demand.

- Public Clouds will be supported by a network of geographically distributed datacenters for high availability, end-user service proximity, legal and policy issues…

- Public Clouds will be interconnected to meet fluctuating demands.

- Grid sites will offer infrastructure cloud-like interfaces to address the new resource access demands from the community.
The Open Source Toolkit to Build Cloud Infrastructures

More info, downloads, mailing lists at www.OpenNebula.org

OpenNebula is partially funded by the “RESERVOIR– Resources and Services Virtualization without Barriers” project, EU grant agreement 215605

References

• B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, “Virtual Infrastructure Management in Private and Hybrid Clouds”, IEEE Internet Computing, September/October 2009 (vol. 13 no. 5)

The OpenNebula Team

• Ruben S. Montero, Rafel Moreno, Tino Vazquez, Javier Fontan and Jaime Melis