

Consolidación de servicios en la nube

José Traver – traverj@uji.es Oficina de Innovación y Auditoría TI

- La nube hasta hoy
- Consolidando servicios
- Identificación de recursos locales clave
- Trasposición en Amazon Web Services

Evolución

- 2010: Gmail + Google Apps
 - Correo corporativo, suite ofimática y almacenamiento
- 2015: laaS + PaaS
 - ERP corporativo + BBDD Oracle
- 2018: Office365
 - Suite Ofimática + almacenamiento
- 2019: laaS + PaaS
 - Aula Virtual

Consolidando el uso

- Migración del Aula Virtual (VLE)
- Activo más importante on-premise tras migrar el ERP+BBDD corporativas

- A corto plazo, evaluación de almacenamiento híbrido para backup
- A medio plazo, interconexión y movilidad de servicios entre diferentes nubes

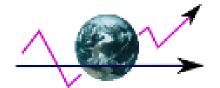
Recursos on-premise

- Recursos hardware
- Recursos software
- Estimación de tráfico en frontales
- Estimación de IOPS en almacenamiento

Recursos Hardware

- Identificación de elementos
 - 3 nodos frontales
 - 2 nodos BBDD Mysql (HA, compartido)
 - 1 nodo trabajos batch
 - 1 nodo servidor NFS (compartido)
 - 1 nodo backup y restauraciones
- Medición de características (sar / sysstat)

Máquina	Disco	RAM	CPU	Red (uso medio diario - incluye backup)	so	Notas
	32GB	7G avg2G	4 x vCores Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz avg 8%, max 80%	Received: 351.894 kB/s - Transmited: 250.889 kB/s	Centos 7.2	Frontal de Aula Virtual.


Recursos Software

- Varias posibilidades para el SO:
 - Migración de la imagen local
 - Instalación en imagen propia (CentOS, Ubuntu, etc.) en AWS
 - Instalación en imagen de Amazon Linux en AWS
- Paquetes de uso común (mysql, php, apache, libreoffice, etc.)

Estimación de tráfico en los frontales

Medición regular mediante AWStat

- Tráfico descargado (sin cabeceras)
- Complementar con datos de sar/sysstat

```
sar -n DEV -f sar_file
```


Determinación de IOPS

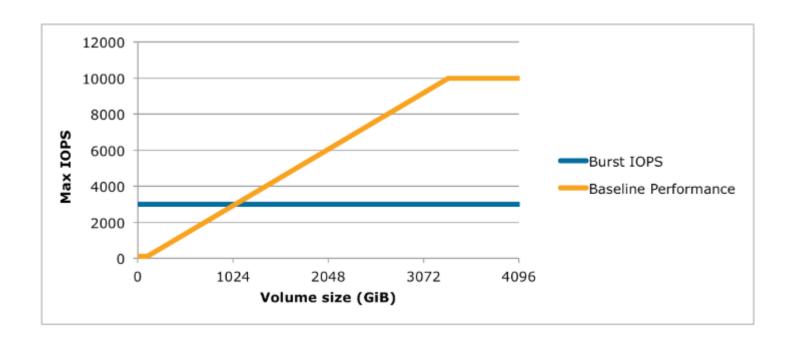
Mediante sar/sysstat

Propuesta de infraestructura en AWS

- Instancias
- Almacenamiento para instancias
- Almacenamiento compartido por NFS
- Copias de seguridad

Instancias

- Modelos nuevos cada año y medio (aprox.)
- Elección de instancias:
 - 2 instancias para frontales
 - 1 instancia para trabajos batch
 - 0/1 instancias para NFS
 - 0 instancias para backup
 - BBDD MySQL en modo PaaS


Almacenamiento para instancias: EBS

- Volúmenes gp2 (discos SSD/NVE)
 - Hasta 160 MB/s
 - 3 IOPS/GB y Ráfagas en volúmenes < 3000 IOPS
- Volúmenes io1 (discos SSD/NVE con IOPS reservadas)
 - Hasta 500 MB/s
- Otros volúmenes(st1, sc1)
 - Hasta 40/12 MB/s por cada TB
 - Ráfagas de hasta 250/80 MB/s por cada TB

Almacenamiento para instancias: EBS

 Ráfagas de IOPS en volúmenes pequeños (fuente: "Guía de usuario de AWS EC2")

Almacenamiento compartido: EFS versus NFS

- EFS: Servicio autogestionado de AWS
 - 50 KB/s por GB
- ¿Merece la pena? -> Servidor NFS+EBS
 - Similar rendimiento base por tamaño
 - Volúmenes pequeños aprovechan ráfagas
 - Volúmenes grandes optan a almacenamiento más barato

Almacenamiento compartido: EFS versus NFS

- EJEMPLO: volumen de NFS de 1 TB
 - EFS: Rendimiento de 50 MB/s y coste de 360 €
 - EBS con gp2: Rendimiento de 48 MB/s y coste de 160 €
 - EBS con sc1: Rendimiento de 12-80 MB/s y coste de 78 €

Los ejemplos con EBS incluyen 50 € aprox. de instancia para servidor NFS

Copias de seguridad

- Snapshots de volúmenes EBS muy eficientes
 - Incrementales
 - Prácticamente instantáneo
- Estrategia de backup de instancia
 - BBDD: Flush y lock de tablas
 - Filesystems: sync y fsfreeze
 - Snapshot de todos los volúmenes (5-10 segundos)
 - Liberar recursos (deshacer los pasos)

Dos céntimos para acabar...

- Si se usan imágenes propias -> incluir los drivers de red y almacenamiento que usa el hardware mejorado de AWS:
 - ixgbevf
 - amzn-drivers
 - NVMe
- Si no están en la imagen de arranque ¡no se podrá leer el volumen o no habrá red!
- Automatizar, por ejemplo, con dkms

La universidad pública de Castellón **www.uji.es**