
Binary Analysis and the 1Binary Analysis and the 1stst Spanish Spanish
Forensic ChallengeForensic Challenge

IRIS-CERT. RedIRISIRIS-CERT. RedIRIS

Feb 8 2005. FIRST -TC ParisFeb 8 2005. FIRST -TC Paris

Format of the hand-on-class

Requirement:

 Laptop: You need a laptop/computer to connect to the virtual
machines and do the exercises.

 Ethernet cable:for the network connection

 SSH client to access to the system

 Knowledge of :

• Unix & Linux systemUnix & Linux system

• Incident analysisIncident analysis

• C programming language C programming language

The lab

The laptop contains different vmware machines running Linux that could
be used as main system

We are going to setup the wired LAN, with static address to connect to
the main system and later to the compromised systems.

Network is 192.168.100.0 , netmask 255.255.255.0

The main system is at 192.168.100.201, choose your IP address from the
192.168.100.100 to 192.168.100.200 range

Username/password are: firstN/firstN, (ex, login first1, password first1

All the binaries and tools are in the “/first/” directory:

/first/handonclass/pres: this presentation

/first/handonclass/exercises

/first/handonclass/tools: some tools

Index

Introduction to Linux Binary Analysis

Exercises with binaries

Exercises with Linux compromised system (several rootkits)

The 1º Spanish Forensic Challenge

The compromised system

Incident Analysis in IRIS-CERT

IRIS-CERT: Spanish Academic and
Research Network.

 About 250 directly connected
Universities and Research
Centers.

 Coordination of incidents ,with
local staff in each center.

 Don't deal directly (at first steps
with the end user)

We don't support “in site”
incident analysis , but provided
limited analysis of the binaries
discovered in the Universities

Incident cycle

1.The typical users don't know that their system have been
compromised, usually we received a complain about scanning/ hacking
activity from some host inside our constituency

2.We send to the technical contacts (TC) in the organization the
information regarding this incident, asking them to investigate the
incident , sometimes we can also send information about the possible
tools used.

3.The TC contacts with the end user and sometimes they can send us
back some information

4.We analyze the data, usually we don't obtain disk images of the
compromised system, instead the user send us binary and logs files.

5.At the end after we finished the analysis and close the incident.

Live forensic

Sometimes we couldn't backup the hard disk data:

 Disks too large for network copy

 Slow network

 Confidential data

 Policy restrictions
Also , we can't reboot the machine and use a forensic boot disk like FiRE

 System can't be shutdown (for example primary DNS server)

 Administrator don't have the required skills.

More time you only got a tar.gz /zip file with suspected binaries found by
the user

The solution is perform a analysis of the binaries in order to know how
they work.

Light Malware Analysis

When we got the suspicious files, we want to know:

What information are the Trojan binaries (ls , ps, etc) hidding ?

What information has the intruder obtain from the compromise (look
for sniffer logs)

 Has the system been used to compromise other systems ?

What others tools had been used // installed ?

Most of the times this is a cyclic process :

 You ask for some information / files

 Users send you it.

 You analyze it and found some possible hidden directories/files

 ask for more information

How to detect rootkits and malware ?

Some tools / techniques that can be used:

 Chkrootkit, from http://www.chkrootkit.org

 Package database management in modern Unix // Linux System and
static checksum (MD5, tripwire) of the system binaries

 Trusted files from another similar system

 Looking for suspicious files and directories in the system

 The techniques are the same as several years ago, the CERT/CC
document about finding information in compromised system is still
valid

Package management system

Most of the modern Unix keep a database of signature for installed
binaries:

 Pkg format for Solaris, FreeBSD

 Debian/Gnu Linux maintain a optional MD5 database of installed files

 RedHAT RPM and derived has a MD5 database of each file installed
using the package system.

Common intruder (script-kiddies) don't touch this database.

With rpm files:

 Rpm -Va checks the MD5 checksum of all the installed files

 Rpm -qla lists all the files.
This does not works for kernel level rootkits but still normal rootkit are
quite frequent

Discrepancies

In most of the Linux system there are different command that provide the
same functionality:

 Ls , dir, mc , echo “*” for file listing

 Netstat, lsof , cat of /proc/net/netststat for connections

 Ps , top, pstree, oldps cat /proc/NN/ for information of processes.

Most of the time we can see discrepancies:

 Listing of process with “ps -aex” different (some are not seen) when
compared with:

 Direct ls of /proc/ to see the proccess

Some of this techniques can be used to detect kernel level rootkit
(sometimes)

Light Binary Analysis

Objective: See what the binaries hides, where are the configuration files
and approximately how it works.

 No full disassembly of the code for reversing engineering of code
only small preview searching for suspicious lines

 You don't need to know how to write assembly code , only some
skills reading the disassembled code

 The C compiled code follow some standards in how to process the
information

 Use of opensource (objdump) program , for learning the basic of the
analysis , with a small “wrapper” to allow easier analysis.

Linux Binary Files

Most Modern Unix share the same file format for binaries: ELF

Principal features of ELF:

 Allow dynamic linking of code , so the binaries are smaller.

 Builds shared libraries of code , so this library code is shared by
different programs.

• Allow replacement and update without changing the applicationsAllow replacement and update without changing the applications

• The program are smaller than the static onesThe program are smaller than the static ones

As an additional feature, the binaries can be adapted to run in different
operating system (Linux, Solaris, *BSD) in the same platform (Intel,
SPARC).

Different Classes of ELF programs

You can build for different classes of binaries executables with the ELF
format:

 Dynamic linked, smaller because the code of the function is in the
libraries and linked to the file at runtime

• Non stripped : usually the result of compiling a program without Non stripped : usually the result of compiling a program without

the optimization and with debug flags the optimization and with debug flags

• Stripped, : Normally the usual binaries in a Linux system Stripped, : Normally the usual binaries in a Linux system

 Statically linked: Bigger than the dinamic, the file included the code
for the system libraries that are used by the program

• Non strippedstatic compiled binaries with debug information Non strippedstatic compiled binaries with debug information

• Striped static: Only used for recovery porpoises for the operating Striped static: Only used for recovery porpoises for the operating

system system

Why to have statically linked binaries ?

Dynamic linked binaries are very sensible to the changes in libraries
(sometimes a small change could not allow them to run

for system recovery (for example some damage in the /libraries directory
the static linked binaries can fix the problem it common to have:

 Dump, ext2fs, etc linked statically for system recovery

Also static binaries are fine if you want to share the same binary with
different distributions (the same binary can be used with Redhat,
Debian,etc) and also with different kernel version if the system calls
don't change.

This static binaries are used by intruder:

 Allow sharing the rootkit without rebuilding it in different systems.

More difficult to analyze

 It's possible to compress and encrypt the binary (see x2 sshd exploit)

Intel ASM introduction

Brief introduction to ASM:

 Registers:

• General registers : eax , ebx , ecx , edxGeneral registers : eax , ebx , ecx , edx

• Segment Registers: CS, SS, DS, ES , FS, GSSegment Registers: CS, SS, DS, ES , FS, GS

• Program flow and stack registers: EIP, ESP, EBPProgram flow and stack registers: EIP, ESP, EBP

 Normal “not optimized” C -compiled code:

• Eax is used as return argument (the result of calling a function)Eax is used as return argument (the result of calling a function)

• Low eax (al) is used as function call index when dealing directly Low eax (al) is used as function call index when dealing directly

with the kernelwith the kernel

Interesting register

EIP : Extended instruction Pointer : Point to the next instruction to be
executed by the CPU. Modify directly by the “jump” instruction and call
and return instruction.

ESP: Extended Stack Pointer: Point to the global Stack (area of memory
used to interchange data between functions (pushing the arguments of
functions in it).

EBP: Extended Base Pointer: Used in “C” programs as the base pointer
for storing local variables in the stack .

Assembly instructions:

Some of the common instructions:

Mov : Move information between registers and memory or between
registers.

 Lea: move information from memory to register

 Push/pop : add or delete information to the special memory zone
called “stack”

 Call execute a function and return back to the next instruction

 Jump (conditional or not) allow to go to other parts of code depending
of some conditions.

 Cmp , test: compare values and test if meets some condition

 Arithmetic : (add , sub) and logic (not, xor, and) between registers

Subrutine Call

We are going to focus in the functions (subrutines) calls in order to
analyze the flow of the programs:

Allways is the same operation:

 The program push (add) to the stack the arguments of the function ,
starting from RIGHT to left

 A call to the address (placing the return address also in the stack is
made)

 After the return the stack is “incresed” so the values are removed
from the stack

Stack and function call

If we have the following code:

int add (a,b) {

 int a,b ;

return (a+b) }

main () {

 int c ;

 c=add (10,20) ;

}

A simplified version of how the
stack works:

Stack
pointer

Stack and function call

If we have the following code:

int add (a,b) {

 int a,b ;

return (a+b) }

main () {

 int c ;

 c=add (10,20) ;

}

A simplified version of how the
stack works:

Reserved for c
Stack
pointer

Stack and function call

If we have the following code:

int add (a,b) {

 int a,b ;

return (a+b) }

main () {

 int c ;

 c=add (10,20) ;

}

A simplified version of how the
stack works:

20
10

Reserved for c

Return addr
Stack
pointer

Stack and function call

If we have the following code:

int add (a,b) {

 int a,b ;

return (a+b) }

main () {

 int c ;

 c=add (10,20) ;

}

A simplified version of how the
stack works:

20
10

Reserved for c

Return addr
Reserved for a
Reserved for b

Stack
pointer

Stack and function call

If we have the following code:

int add (a,b) {

 int a,b ;

return (a+b) }

main () {

 int c ;

 c=add (10,20) ;

}

A simplified version of how the
stack works:

20
Reserved for c

Return addr
Stack
pointer

10

Stack and function call

If we have the following code:

int add (a,b) {

 int a,b ;

return (a+b) }

main () {

 int c ;

 c=add (10,20) ;

}

A simplified version of how the
stack works:

Stack
pointer

Stack frames

Inside a function ebs is used to
keep track of the current stack
value.

 At the start of the function ebp
is pushed (stored in the stack)

 Ebp keep the esp value

 Esp is modified by local
variables and calls to other
functions

 At the end esp is loaded with
the value of ebp

 Ebp is recovered (pop) from
the stack

 The function return

Return address

Local

variables

ebp

esp

Stack frames

Inside a function ebs is used to
keep track of the current stack
value.

 At the start of the function ebp
is pushed (stored in the stack)

 Ebp keep the esp value

 Esp is modified by local
variables and calls to other
functions

 At the end esp is loaded with
the value of ebp

 Ebp is recovered (pop) from
the stack

 The function return

 Example function:

 push %ebp

 mov %esp, %ebp

 sub -20, %esp

 mov %ebp , %esp

 pop %ebp

 retn

Some ASM examples

How does a loop look in ASM ?

Typical loop:

 for (n=10 ; n!=0 ; n--) { code}

Start: mov $10, 4(%ebp)

loop: cmp 4(%ebp),0

 jg code

 jmp end_loop

code: loop code.

 dec 4(%ebp)

 jmp loop

end_loop:

ASM example II

Normal condition;

if (a !=0) then {do1}

 else { do2}

(sometimes)

if (c=fopen(.....) !=0) ...

Depending on the optimization and
the condition the condition can be
reversed.

Cmp $0, -4(%ebp)

jne do1

do2:

.....

do1: code of d1

Asmdump,

The basic disassembler is shipped with most development tools, part of
the “binutils” package: objedump.

We are going to use a small perl wrapper around this program that
provide some additional help:

 Add comments and references to the strings found in the assembly
text.

 Replace the address of the function with their name, for easy reading
of the code.

This small script is part of another program called LDASM, but asmdump
works in text mode only , browsing the output code in your favorite
editor.

Note about ASM syntaxis

AT&T

Used mainly in the Unix World

Register are prefixed with “%” and
values with $

The first operand is the source and
the second the destination

The base register is enclosed by “(“
and “)”

Suffix for operand sizes (l= long,
w=world, b= byte)

Indirect addressing take form of
 %segment:disp(base, index,scale)

Intel

Mostly used in the Windows world

No prefixes for register of value
references

First operand is the destination and
first one is the source

The base register is enclosed by “[“
and “]”

Additional directives for use with
memory operand byte ptr...

Indirect addressing takes the form
of segment:[base+index*scal+disp]

(Gnu)libc : Standard C library

 GnuLibC provides the most common functions for C (and other
languages) interfaces: printf, fopen, .. all this functions are
implemented in the glibc library.ç

 Some of the functions are translated as call to the operating system
(read, fopen), but other are user space related (printf, scanf, etc).

 You can use the “ldd “ command in linux to list the dinamic linked
libraries used by a program.

We are dealing with dynamic linked binaries so all this function are
“linked” at run time in the binary, so in the disassembled source code
we will not see the code for the function only the call to it.

Searching for the main function

Searching for the main function.

With the non-stripped binaries you will found a “main function
declared in the disassembled output, this is were the programs starts.

 For stripped binaries:

• One important function provided by glibc is the One important function provided by glibc is the

“__libc_start_main” , that is used to initialize the program and call “__libc_start_main” , that is used to initialize the program and call

the main function .the main function .

• This is a dinamic function so is allways imported in normal This is a dinamic function so is allways imported in normal

stripped binaries.stripped binaries.

• The first argument to this function is the address in which the The first argument to this function is the address in which the

main program start main program start

ASM: information hidding I

The forensic tool “strings” is very useful but:

 Show only strings of more than four characters (by default) so if the
strings has less that this number is not displayed.

 Some rootkit could split longs strings in small pieces to hide the
configuration files.

What happened if the rootkit uses some kind of encryption of the
strings ?

 You can search for pattern in the code (similar instructions repeated
instruction

 Also calls to “sprintf” to join small strings in one big strings.

ASM information hidding:

Some intruder are using the binary compressor (UPX) to reduce the size
of binaries and also hide strings.

 The files with the strings “This file has been compresed by UPX..” are
UPX compressed.

• Can be used as rootkit test:: no normal distribution ships Can be used as rootkit test:: no normal distribution ships

compressed upx binaries.compressed upx binaries.

 UPX (In linux) wrote the uncompressed file in the /tmp directory , run
and after running delete it, so you can recover the files from this
directory.

 You can also use UPX to decompress the file, but some files are
modified to not been recognized as compressed files by upx.

 You always trace the files with a debugger (gdb) or use memory
dumps to analyze the binary.

Exercise 1 : Small code analysis

Objective: Test the skills explained about source code disassembly with
some C code examples.

 The example include are some easy to understand C program code.

 Copy to your home directory the source code files, compile them
and after disassembly them view the assembly code with an editor.

So it's your turn:

Exercise 2.

Linux binaries from two rootkis:

 Linux-1 : Analyze some linux trojan files, trying to reverse
engineering how they works.

 Linux-2: Try to detect the hidden strings in linux rootkit, the strings
are hidden so they are not directly show with the strings command.

Exercise 3

Binaries from other platforms

 Sparc architecture is different from intel.

• Register are used to exchange arguments in function calls.Register are used to exchange arguments in function calls.

• Require alignment of instructions so some “nop” (nulls) are Require alignment of instructions so some “nop” (nulls) are

inserted in the code.inserted in the code.

• Optimization used to change the order of some instructionsOptimization used to change the order of some instructions

 Two examples

• Sun-1: Try to find the configuration files in a solaris rootkitSun-1: Try to find the configuration files in a solaris rootkit

• Sun-2: Same, but the binary has the configuration file hiddenSun-2: Same, but the binary has the configuration file hidden

The 1st Forensic Challenge in Spanish

Organized last year by RedIRIS, with collaboration from:

 UNAM-CERT (México)

 CAIS/RNP (Brasil)

 SANS

 Spanish Security Experts
Prices donated from some companies:

 Encase (Guidance Software)

 SANS documentation

Forensic analysis of a compromised Linux Machine (Honeypot)

 No special intrussion, simple one.

Small diffusion security lists in Spanish

Participants must provide:

 Anonymous “executive” report describing the incident.

 Technical report (60 pages max.) analyzing the incident.
It was very important that the report describes not only what the intruder
has done, but also how the investigator has found it,

Describing the tools used in the analysis .

Correlating information from different sources.
 Objective:

 Promote computer forensic “awareness” in our constituencies

 Provide a “learn by example” repository of forensic analysis in
Spanish that could be useful to users that want to learn about
computer forensic.

At the end: 14 participants send their reports that are published in the
web pages

High quality of all the reports

Quality of reports

•All reports obtained more than 5 points (if use a scale of 10 point for the
best papers, the “fewer” was 6,2 points).

Most users provided graph and statistics of the intrusion

Different techniques and tools used:

 Sleutkit

 TCT

 But also :

• Home made toolsHome made tools

• Repositories of MD5 filesRepositories of MD5 files

 BSD accounting from the compromised system

 SWAP memory cumps

2nd Forensic Challenge in Spanish

Promoted this year by UNAM-CERT (México), wth some help from
RedIRIS, CAIS, RNP,

Initial phase:

 Published in Security list and also with some press information

 Ask people to register to know the number of people interested in the
challenge

The Challenge started on 1st of Feb, with the download of the image.

More than 900 users have been registered:

• If only 5% of users presents a report it would be about 50 new If only 5% of users presents a report it would be about 50 new

forensic reports.forensic reports.
The result of the challenge would be announced in April , with a official
price award in the UNAM security conference (May)

Our Opinion about the challenge:

 Very interesting to promote some techniques (computer forensic in
your constituency)

 Reports are in people's mother tongue, so they reach more people
that other information written in English.

 Provide a good example library that can be used by other user that
want to learn about this matter.

So....

for the next TC:

Why not organize a forensic challenge inside TC first members ?

An small example

As an small example for you:

 There are different machines at Ipaddress: XXX.XXX.,XXX,X
compromised with different rookits.

 Connect to them (root password if first) and try to find the rootkit and
how they works.

 Use the tools that are now available, don't start with the copy of the
filesystem :-)

